Refine Your Search

Topic

Author

Search Results

Technical Paper

The Analysis of Counter-Rotating Propeller Systems

1985-04-01
850869
A vortex lattice method for the aerodynamic analysis of counter-rotation propellers was developed. This model along with an unsteady Sears analysis for correcting the quasi-steady loadings that are obtained from the vortex lattice model were used to predict the performance of counter-rotation propeller systems. The method developed shows good correlation with experimental results. The investigation into the unsteady loadings on each of the propellers indicates that significant variations in loading occur due to the unsteady flow and due to the propeller blade passage. These variations were found to be as high as 17 percent of the mean value. The parametric studies that were performed indicate that reducing the rear propeller's diameter or rotational speed results in a loss of efficiency.
Technical Paper

Average Value Modeling of Finite Inertia Power Systems with Harmonic Distortion

2000-10-31
2000-01-3648
Typically, average-value models of power system components neglect harmonic information. Herein, a systematic method of including harmonic information in average-value models based on the theory of multiple reference frames is set forth. Computer simulation results show that when there is significant harmonic distortion of the ac distribution bus the models presented herein are more accurate than traditional average-value models. Furthermore, much of the computational advantage of average-value techniques over detailed modeling techniques is retained.
Technical Paper

The Status of Error Management and Human Factors in Regional Airlines

1999-04-20
1999-01-1594
This paper explores the current status of error management strategies and human factors efforts within regional airlines. It briefly addresses the potential needs of the environment from a perspective of the market’s accident and incident history as well as anecdotal reports received from members of the regional airline community. It also raises questions concerning the applicability of human factors and error management strategies developed in other segments of aviation to the problems faced within regional airline environments.
Technical Paper

Fracture Mechanics Based Approach for Quantifying Corrosion Damage

1999-04-20
1999-01-1589
The objective of this project is to quantify structural degradation due to corrosion through a fracture mechanics based approach. The metric parameters employed are Equivalent Initial Flaw Size and general material loss. Another objective is to correlate a measurable property to the amount of structural durability damage from corrosion, ideally through current NDE technology, with eddy-current as the primary choice. The approach is comprised by the following areas: corroding aluminum alloys, evaluation of the corrosion through techniques such as surface roughness and eddy current, cyclic testing, calculation of corrosion metric, and, correlation between corrosion metric and physically measurable properties.
Technical Paper

Is There a Need for Human Factors and Error Management in General and Corporate Aviation?

1999-04-20
1999-01-1595
This paper explores the need for human factors and error management within the context of the general and corporate aviation environments. It discusses strategies currently employed in other segments of the aviation industry and how they might be utilized in the corporate and general aviation arenas. It also relates research findings and program successes experienced within the airline industry and makes recommendations as to how a consortial effort by industry organizations might be utilized to employ these strategies in corporate and general aviation operations.
Technical Paper

Analysis of Widespread Fatigue Damage in Lap Joints

1999-04-20
1999-01-1586
This paper describes research to analyze widespread fatigue damage in lap joints. The particular objective is to determine when large numbers of small cracks could degrade the joint strength to an unacceptable level. A deterministic model is described to compute fatigue crack growth and residual strength of riveted panels that contain multiple cracks. Fatigue crack growth tests conducted to evaluate the predictive model are summarized, and indicate good agreement between experimental and numerical results. Monte Carlo simulations are then performed to determine the influence of statistical variability on various analysis parameters.
Technical Paper

Human Factors Best Practices

1999-08-10
1999-01-2977
Throughout the industry, organizations struggle with the task of implementing effective human factors programs aimed at reducing maintenance errors. Almost universally, many barriers have frustrated these efforts. In 1998 and 1999, the National Transportation Safety Board sponsored two workshops designed at identifying barriers to the implementation of human factors programs and to explore what was working and what was not working among the many industry efforts. This paper explores the findings of these workshops. In addition, it will report findings of Purdue University studies that reveal a rapid deterioration of even the most successful human factors programs. The research findings disclose several “disconnects” within most organizations which rapidly negate the positive effects of successful human factors and error management training and nullify many proactive human factors programs.
Technical Paper

Critical Management Skills for Maintenance Managers

1999-08-10
1999-01-2976
Recognizing that technicians and managers need additional skills in order to compete for and successfully fill management positions, a major air carrier requested that Purdue University perform a study with employees in order to identify specific skills that are required to perform successfully in leadership positions. The study identified three core competencies (leadership, communication, and management processes) needed to be a successful leader in a major air carrier environment and outlined several related knowledge and skills within each area. Currently, many individuals in front line and mid-level management are lacking in several of these knowledge bases and skill sets. Consequently, the value of addressing current deficiencies through educational and experiential learning opportunities was proposed.
Technical Paper

Excitation Strategies for a Wound Rotor Synchronous Machine Drive

2014-09-16
2014-01-2138
In this research, excitation strategies for a salient-pole wound rotor synchronous machine are explored using a magnetic equivalent circuit model that includes core loss. It is shown that the excitation obtained is considerably different than would be obtained using traditional qd-based models. However, through evaluation of the resulting ‘optimal’ excitation, a relatively straightforward field-oriented type control is developed that is consistent with a desire for efficiency yet control simplicity. Validation is achieved through hardware experiment. The usefulness/applicability of the simplified control to variable speed applications is then considered.
Technical Paper

Measured Interfacial Residual Strains Produced by In-Flight Ice

2019-06-10
2019-01-1998
The formation of ice on aircraft is a highly dynamic process during which ice will expand and contract upon freezing and undergoing changes in temperature. Finite element analysis (FEA) simulations were performed investigating the stress/strain response of an idealized ice sample bonded to an acrylic substrate subjected to a uniform temperature change. The FEA predictions were used to guide the placement of strain gages on custom-built acrylic and aluminum specimens. Tee rosettes were placed in two configurations adjacent to thermocouple sensors. The specimens were then placed in icing conditions such that ice was grown on top of the specimen. It was hypothesized that the ice would expand on freezing and contract as the temperature of the interface returned to the equilibrium conditions.
Technical Paper

A Dynamic Two-Phase Component Model Library for High Heat Flux Applications

2019-03-19
2019-01-1386
Pumped two-phase systems using mini or microchannel heat sink evaporators are prime candidates for high heat flux applications due to relatively low pumping power requirements and efficient heat removal in compact designs. A number of challenges exist in the implementation of these systems including: ensuring subcooled liquid to the pump to avoid cavitation, avoiding dry out conditions in heat exchangers that can lead to failures of the components under cooling, and avoiding flow instabilities that can damage components in an integrated system. To reduce risk and cost, modeling and simulation can be employed in the design and development of these complex systems, but such modeling must include the relevant behavior necessary to capture the above dynamic effects.
Technical Paper

Strawberry Cultivar Analysis: Temperature and Pollination Studies

2006-07-17
2006-01-2030
Strawberry is a life-support-system candidate crop species that is long-lived, asexually propagated, and can bear large quantities of fruit high in sugar and antioxidant content. Strawberries of four day-neutral cultivars (‘Tribute’, ‘Tristar’, ‘Seascape’, and ‘Fern’) and one ever-bearing cultivar (‘Cavendish’) were grown under greenhouse conditions or varying temperature regimes in three growth chambers. Flowers in growth chambers were hand pollinated three-times weekly with stored pollen, and ripe berries were harvested, counted, weighed, and tested organolepticly. In the greenhouse, two different pollination treatments were compared, while another group of plants was left unpollinated, receiving only occasional mechanical stimulation from normal greenhouse airflow, berry harvest, and plant maintenance. A second group was pollinated with a vibrating wand, and a third group was hand pollinated with stored pollen.
Journal Article

Designing for Large-Displacement Stability in Aircraft Power Systems

2008-11-11
2008-01-2867
Due to the instabilities that may occur in power systems with regulated loads such as those used in military aircraft, ships, and terrestrial vehicles, many analysis techniques and design methodologies have been developed to ensure stable operation for expected operating conditions. However, many of these techniques are difficult to apply to complex systems and do not guarantee large-displacement stability following major disturbances such as faults, regenerative operation, large pulsed loads, and/or the loss of generating capacity. In this paper, a design paradigm is set forth guaranteeing large-displacement stability of a power system containing a significant penetration of regulated (constant-power) loads for any value of load power up to and including the steady-state rating of the source. Initial investigations are performed using an idealized model of a dc-source to determine the minimum requirements that ensure large-displacement stability.
Journal Article

The Utility of Wide-Bandwidth Emulation to Evaluate Aircraft Power System Performance

2016-09-20
2016-01-1982
The cost and complexity of aircraft power systems limit the number of integrated system evaluations that can be performed in hardware. As a result, evaluations are often performed using emulators to mimic components or subsystems. As an example, aircraft generation systems are often tested using an emulator that consists of a bank of resistors that are switched to represent the power draw of one or more actuators. In this research, consideration is given to modern wide bandwidth emulators (WBEs) that use power electronics and digital controls to obtain wide bandwidth control of power, current, or voltage. Specifically, this paper first looks at how well a WBE can emulate the impedance of a load when coupled to a real-time model. Capturing the impedance of loads and sources is important for accurately assessing the small-signal stability of a system.
X